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1 Introduction 
This document sums up the developments regarding the foundations of the SmartCoDe work package 
1 since the submission of Deliverable D-1.1.1. The idea of D-1.1.1 was to define the basic components 
in the home/small businesses demand side management scenario as a base for all further considera-
tions regarding energy management. D-1.1.1 contained 

 a simple classification of Energy using Products (EuPs) into seven classes. It bundled all the 
EuPs together which could be treated in a similar fashion regarding interfaces and energy 
management approach with respect to the SmartCoDe application scenario. 

 a similar classification of Local Energy Providers (LEPs) into 4 classes, with initial models for 
wind- and solar power prediction. 

 first thoughts on the general approach of the SmartCoDe energy management by contrasting 
a classical centralised approach with a more innovative decentralized approach.  

The last point probably saw the most consideration in the following months, and in D-1.1.1 the decen-
tralized approach was already favoured. The final outcome was called a semi-decentralised approach, 
since it became obvious that even when shifting a lot of the decision-making from the Energy Man-
agement Unit (EMU) to the SmartCoDe nodes, the EMU still has a lot of opportunity (and responsibil-
ity) to influence the nodes’ local decisions. 

The rest of this document is organised as follows: In Section 2 the final outcome regarding the global 
energy management approach is shown. Section 3 discusses the EuP classification, with a focus of 
the final local energy-management algorithms. Section 4 gives a short overview of the results regard-
ing the LEPs, before concluding in Section 5. 

Note that parts of this document have been presented already in previous Deliverables and Reports. 
The intention of this document is to collect all the relevant information together in order to draw a co-
herent and concise picture of the fundamental research done in work package 1. Also, there are some 
adaptions made due to practical experience which haven’t been documented yet which will be pre-
sented here. 

 

2 Energy management 
One of the first decisions to be made in work package 1 regarding the energy management was how 
much of the computing power of the wireless nodes (the SmartCoDe nodes) to use for the energy 
management process. Since there was formidable computing power available at the node level, which 
was needed anyway for running the ZigBee stack alone, the idea of using some kind of distributed 
energy management approach evolved, where the EMU would broadcast a message indicating at 
which times it would be best to use more or less energy, respectively. 

The alternative was to take the simple path of using the SmartCoDe nodes merely as receivers of on-
off signals (or more than two power levels if available), with the EMU making all the decisions by mi-
cro-managing every EuP. However, in the course of the EuP classification, which was done in parallel 
(see Section 3), it became apparent that this approach would create different problems.  

For example, if a fridge would be controlled by the EMU with simple on-off signals, the fridges tem-
perature is a major basis for the decision making, and therefore has to be transmitted through the 
whole network to the EMU constantly. Although this would not be a problem in the SmartCoDe dem-
onstrator, in networks of bigger size this might cause bandwidth problems at some point. Also, if there 
is an EMU crash or a network breakdown, there has to be a fall-back solution on the SmartCoDe node 
for the broken control loop. 

Table 1 shows on overview of the pros and cons of both approaches as they presented themselves at 
the time when the decision was made. It is easy to see that there are more pros for the decentralised 
approach and more cons for the centralised one. Also, even in a decentralised approach certain 
(classes of) EuPs can be still managed in a centralised manner if necessary or favoured (see section 
3.3 for an example). This consequently led to the decision to develop a decentralised approach. 

Most of the points in Table 1 are still valid. What probably isn’t really an issue is the number of man-
ageable EuPs, since also in a decentralised approach each node is known to the EMU for simple net-
working reasons. Also, the EMU is the part of the network which can in principle be upgraded as 
needed regarding computational power and/or memory to handle any reasonable workload in a cen-
tralised approach without increasing the overall system costs drastically. 
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The load balancing problem for the decentralised approach turned out to be easier to solve as ex-
pected, as will be shown later. On the other hand, the complexity of the software on the node level for 
the decentralised approach proved indeed to be considerably complex for some EuP classes, as will 
be seen in Section 3. 

Table 1 Centralised vs. decentralised energy management in SmartCoDe 

 

 

2.1 The semi-decentralised approach 
Figure 1 shows an overview of the SmartCoDe energy management approach. In general we assume 
that the EMU tries to achieve a certain overall target load profile for the whole cluster. This load profile 
might have been computed by the EMU itself as a cost-optimal solution to the current tariff and other 
circumstances. It might even be the result of automated negotiations between utility and EMU; but in 
fact, this is not important here since this is not the scope of SmartCoDe. The scope of SmartCoDe is 
to provide an infrastructure and a methodology to achieve any given target load profile as best as pos-
sible. 

 

Figure 1 Schematic view of the SmartCoDe energy management approach 
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The general concept shown in Figure 1 is a big control loop: The EMU collects the load profiles from 
the single EuPs and compares the sum of these load profiles to the target load profile. The controller 
then tries to issue the next round of cost profiles to the SmartCoDe nodes such that the difference to 
the target load profile is minimised. 

Figure 1 still leaves open several possibilities: 

 The load profiles sent by the SmartCoDe nodes could be planned loads, expected loads or 
past loads. 

 The cost profiles issued could target one EuP each, certain groups of EuPs, certain EuP 
classes, or it could be just one cost profile (k=1). 

 The exact controller action is not specified. However, it is obvious that just using the difference 
to the target load profile is not enough input here, hence the additional input of the single load 
profiles to the controller. 

In Section 2.3 the implementation as it was done at the SmartCoDe demonstrator is described. In 
Section 2.4 a possibility is described which was not implemented. 

Note that the reason why this energy management approach is called semi-decentralised is twofold: 

 With the option to send a dedicated cost-profile to a single EuP, the EMU still can (within 
bounds) control an EuP very tightly. For example, it could essentially force an EuP to switch 
on at a certain time for a certain amount of time by making all other options maximally costly; 
but of course this works only if this “forced” option is a possibility at all. 

 A true decentralised energy management approach should not have any central component 
involved in the energy management; all the computation should be spread over the whole 
network. 

 

2.2 Cost- and load-profile 
In D-1.2 the general idea of using cost profiles (called cost functions at that time) was already pre-
sented. One inspiration was the load control event from the ZigBee Smart Energy profile. This is es-
sentially a message which tells an EuP, or a group of EuPs, to behave in a certain way for a given 
time frame specified by a start time and a duration. 

The message contains several fields (not all of them have to be used) to control different kinds of be-
haviour, e.g. temperature setpoints. One field, the Criticality Level (see Figure 2), indicates in abstract 
terms if the EuP should use more or less energy. The levels range from 1 (energy can be used freely), 
to 6 (save as much as possible). There are also 3 additonal levels to indicate emergencies, planned 
outages and service disconnects. The rest of the 8-bit value range is reserved. 

 

Figure 2 Format of the ZigBee Smart Energy load control event 

Octets 4 2 1 4 2 1 1

Data
Type

Unsigned
32-bit
integer

16-bit
BitMap

Unsigned
8-bit
integer

UTC
Time

Unsigned
16-bit
integer

Unsigned
8-bit
integer

Unsigned
8-bit
integer

Field
Name

Issuer
Event ID
(M)

Device
Class
(M)

Utility
Enrolme
nt Group
(M)

Start
Time (M)

Duration
In
Minutes
(M)

Criticalit
y Level
(M)

Cooling
Temperat
ure
Offset
(O)

Octets 1 2 2 1 1 1

Data
Type

Unsigned
8-bit
integer

Signed
16-bit
integer

Signed
16-bit
integer

Signed
8-bit
integer

Unsigned
8-bit
integer

8-bit
BitMap

Field
Name

Heating
Temperat
ure
Offset
(O)

Cooling
Temperat
ure Set
Point (O)

Heating
Temperat
ure Set
Point (O)

Average
Load
Adjustme
nt
Percenta
ge (O)

Duty
Cycle
(O)

Event
Control
(M)



  Page 6 

 
Seventh Framework Programme  SmartCoDe – GA No. 247473 

The idea of the SmartCoDe cost profile is to bundle a series of such (successive) load control events, 
but specialised only to the Criticality Level. That is, it contains a vector of duration - Criticality Level  
pairs describing the varied abstract cost of energy use for a certain time span beginning at the start 
time. For maximum flexibility, the time granularity can be chosen from 0.1 seconds to about 1.5 hours 
in the time resolution field. 

Table 2 SmartCoDe cost profile 

 

In the course of the project, especially when the overall energy management approach was refined 
due to practical experience at the demonstrator site, it turned out that the restriction of the Criticality 
level to the values 1-6 proved impractical regarding the implementation for the energy management 
approach which is presented in Section 2.3.  

In this implementation the EMU stores a master cost profile which adds up the load plans received so 
far. This master cost profile is then added to the forecast of the turbine output and broadcasted. Obvi-
ously it is more practical in this setting if the criticality level values are directly proportional to the power 
usage of the load plans and the power forecast of the turbine. However, this can’t be done with only 
with six available values. Therefore, the full 8 Bits of the Criticality Level are used in the final imple-
mentation. 

This implicitly means that the Criticality Levels are now carrying information of available wattages. 
However for the nodes cost-dependent algorithms this is not important. The nodes just look for a solu-
tion for their load plans which minimises the costs, the unit of the cost does not matter. For the nodes, 
the values are still abstract. 

In an implementation as it is described in Section 2.4, where each node receives a custom cost profile 
it would be possible to use the value range of 1-6 again, since each cost profile could be scaled ac-
cordingly before sending.  

The load profile message used for the load plans is shown in Fehler! Verweisquelle konnte nicht 
gefunden werden.; it is very similar to the cost profile, the main difference is that the unit of the values 
is not abstract any more, but now gives the power to be used in watts. The resolution of the power 
fields can be set from 0.1 watts to about 6.5 kW. 

Table 3 SmartCoDe load profile 

 

Note that the high resolution options available for cost- and load profile starting from 0.1 seconds and 
0.1 watts are not really needed in your application scenario. However, since 16 Bits are available any-
way it made more sense to offer higher resolution instead of allowing the resolution units to go up to 
18 hours and 65 kW, respectively. 

 

2.3 Energy management with committed load plans 
This Section presents the global energy management algorithm as it was implemented in simulation, 
in the lab and the Buchberg demonstrator. It has been essentially presented in D-2.5 and is given here 
again for completeness. 

The core idea of this algorithm is load balancing. We assume that we are given an initial cost-profile 
which could for example simply represent the predicted power output of the local wind turbine. In fact, 
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If the EMU broadcasts this cost-profile alone, all the EuPs would try to plan their consumption peaks in 
the cheap time frames. However, if all the EuPs do that, the final result will usually not be what is de-
sired; the overall power consumption might exceed the turbines production such that still a lot of power 
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from the grid has to be drawn, while a while later turbine power might still be available (yet in less ex-
cessive amounts), but is not needed. 

An important premise of the following algorithm is therefore also that the EuPs do not plan their con-
sumption on arrival of the cost-profile, since this would also lead to a similar situation as described 
above. However, as will be seen in Section 3, this is not the case for the local energy management 
algorithms used. 

However, the core premise of this algorithm is that the load profiles of the EuPs received are commit-
ted load plans. That is, these load plans will be executed as is and can be taken as a given barring 
unforeseeable circumstances, e.g. by user interference or override. Therefore, after a load-profile has 
been issued, all subsequent cost-profiles can be ignored until the current load plan has been exe-
cuted. How this is done on the node level is also described in Section 3. 

The assumption of load-plan commitment has a key advantage: We can use a single cost-profile for all 
EuPs. If a load plan is received by the EMU, it incorporates it into the new cost profile such that the 
cost in times of high load according to the received load plan rises. This new cost profile is then 
broadcasted to all EuPs. 

Since the appliance which just sent the last load-plan ignores the new cost profile until the current plan 
is executed, it will not be blocked by its own recently sent load plan. And when the next load-plan is 
computed, the cost-profile values affected by the last load plan are already outdated and are not 
broadcasted anymore. These considerations now give rise to the following protocol for a group of load-
plan committing appliance: 
 

1. The EMU broadcasts a cost-profile to all appliances in the group. The base of this initial cost 
profile is of no concern here. For example it might reflect the power consumption of all other 
appliances in the network. It could also be based on a forecast of the local wind turbine power 
output or a tariff more volatile (e.g. hourly-changing) then commonly used today. If the only 
goal is load-balancing, the initial cost-profile would be constant 1 in our implementation. 

2. At some point an appliance issues a load-plan to the EMU, e.g. when a freezer switches off 
the first time after finishing its learning phase and now computes a plan as described in the 
previous Section.  

3. The EMU incorporates the load-plan into the current cost-profile and broadcasts it. For this, it 
holds an internal copy of the cost profile which is constantly updated with load-plans and fore-
casts. 

4. Eventually, other appliances will compute and send load plans, based on the cost-function 
they have received at that point, giving rise to subsequent cost-profile updates. 

 
Note that it is still possible for the EMU to send a custom cost-profile only to the specific node (i.e. 
point-to-point and not via broadcast) if it wants to persuade it to change its plans. Since in ZigBee a 
node can distinguish between a broadcasted message and one which was sent to it specifically, it 
would then know that the EMU wants it to explicitly break the previous load commitment. This might 
become necessary if conditions outside of the appliance group change (for example the wind-forecast 
or grid stability issues). Of course changing the load plan might not be possible from a certain point on, 
but it still is for example if a dishwasher has still to start the program, or a fridge has not switched its 
compressor yet. 
 

2.4 An option with non-committed load plans 
This Section describes how the load balancing would work without committed load plans in the 
SmartCoDe setting, for example with load plans which the EuPs are only partially committed to, e.g. in 
case of the extended load plan described at the end of Section 3.2. While this has not been imple-
mented, it could easily be done by only changing the code on the application level of the EMU and the 
SmartCoDe node; there wouldn’t be the need to change the SmartCoDe profile itself. 

The protocol would be as follows: 

 Instead of incorporating the received load plans to the internal cost-profile, the EMU has to 
store all load plans received and keep them in the memory until they are outdated. 

 If a new load plan is received, the EMU computes for each individual appliance a custom cost-
profile using all other relevant load-plans, together with the “base” cost-profile derived from 
forecasts and/or tariffs (i.e. on the Buchberg demonstrator the wind turbine output forecast). 
These custom cost-profiles are then successively sent to the respective appliances directly. 
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This obviously results in a considerably higher effort on the EMU-side with respect to computational 
effort and memory requirements; but since the EMU can have a considerably higher computational 
power than the sensor/actor nodes, this is not really an issue. Also, more cost-profiles messages have 
to be sent. However, a point-to-point message consumes less network-bandwidth than a broadcast. 
Also, a broadcast is less reliable than a point-to-point message. Because of that, in the implementation 
as described in Section 2.3, cost-profile updates are broadcasted in regular intervals in addition to the 
ones triggered by incoming load-plans. Therefore the apparent bandwidth-disadvantage here might 
actually not be so big. 
 

3 Energy using Products 

3.1 Classification 
One of the first results of the SmartCoDe work package 1 was the classification of energy using prod-
ucts. This was done because it became apparent that originally proposed approach from the Descrip-
tion of Work (DoW) seemed not to be as constructive as it looked at first. The original approach was to 
base the abstract EuP models on discrete Markov state models which describe the different power 
states of the EuP and the respective transitions between them. With respect to the very Deliverable at 
hand, refinements of these Markov models gained from the practical experience in the course of the 
project could be given. 

However, this Markov model approach does not take into account the specific service offered by the 
EuP as well as the user interaction. The power states of many EuPs (and hence of the corresponding 
Markov model) would often be simply on and off. That is, very different appliances would fall into the 
same category if we just look at the power states, e.g. a lamp would look very similar to an electric 
kettle. 

Furthermore, similar devices may fall into different classes, e.g. fans might have different numbers of 
power consumption levels and therefore would look different although they all do the exact same thing 
and are also used the exact same way. 

And when looking at the transitions characteristics, we may find that these are often user-specific. The 
Markov model of a washing machine in a one-person household will have different transition probabili-
ties than one in a family household, since it is used less frequently.  

 

Figure 3 Overview of the SmartCoDe classification of EuPs 
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Table 4 SmartCoDe classification of EuPs 

 

Figure 3 shows an overview of the EuP classification, and Table 4 gives a more detailed look. Since 
deliverable D-1.1.1, there have been some minor changes and additions: 

 In the row “Energy Management Strategy”, the sub-row “cost” indicates if the cost profile is of in-
terest for energy management of the specific class. For example, this is the case for the VARSVC 
class which covers lighting applications, since automated switching of lights due to energy avail-
ability will probably not be accepted by the general user in the home/office sector. 

 The class previously called “VSTSVC” (virtual storages) is now called “THMSVC” (thermal ser-
vices). While the virtual storage property for this class is still valid, it turned out that in the 
home/office sector there are no appliances of this class where the electrical energy is not trans-
formed to thermal energy. And since in the course of the project temperature forecasting played 
an important role for this class, it was appropriate to reflect this also in the naming 

 The renaming of the “SKDSVC” class to “SCDSVC” is merely a correction of a typo caused by use 
of American English pronunciation by a non-native speaker (German) who transformed this pro-
nunciation back to a wrong abbreviation. 

 

 

 

 

ConfigurationSensor input Online input Strategy cost

VARSVC

Variable Service:
The appliance provides 
a user-variable service 
which is balanced with 
sensor input.

tolerance 
bounds

current state 
of the 
service,
e.g. 
illuminance

user demand,
e.g. setpoint 
for 
illuminance

Minimise consumption 
by balancing the service 
with user demand, 
tolerance bounds and 
sensor measurement.

No lighting 
controlled by 
illuminance 
level, dimmable 
lighting, blinds

THMSVC

Thermal service:
The appliance provides 
a inert, thermal service 
which can serve as a 
virtual storage.

temperature 
bounds / 
hysteresis

temperature user demand,
e.g. setpoint 
for 
temperature

Adjust temperature to 
user demand while 
exploiting the virtual 
storage property to 
minimise costs.

Yes Fridge, Freezer, 
Heating, A/C, 
Water-boiler

SCDSVC

Schedulable Service:
The appliance provides 
a service which can be 
scheduled within a 
certain time-frame.

runtimes and 
power 
profiles of 
the different 
programs

none deadline Schedule program such 
that deadline is met and 
the program's load 
profile produces minimal 
costs.

Yes washing 
machine, dryer, 
dishwasher, 
baking machine

ETOSVC

Event-Timeout 
Service:
The appliance is control-
led by sensor events 
and time-outs.

time span sensor event,
e.g. presence 
detection

none 
(indirectly 
through 
sensor input)

Control appliance 
according to sensor 
events and time-outs.

No lighting 
controlled by 
presence 
detector 

CHACON

Charge Control:
The appliance charges 
a possibly removable 
device.

charging 
policy

current 
charge 
status, device 
presence

device 
removal re-
insertion

Charge device such that 
costs are minimised, 
while obeying charging 
policy.

Yes battery 
chargers, hand-
held vacuum, 
emergency 

COMCON

Complete Control:
Like CHACON, but the 
usage of the charged 
power can also be con-
trolled.

charging 
policy, duty 
cycles, 
time slots

current 
charge status

none Like CHACON, but also 
control the usage of the 
appliance cost-
effectively while obeying 
to the given time-slots 

Yes robot vacuum, 
robot lawn-
mower

CUSCON

Custom Control:
device does not fit into 
other classes or has too 
high user inetraction to 
be controllable.

none none user demand Automatic Energy 
Management probably 
not tolerable by user; 
custom schemes can be 
defined which are 
implemented by the 

No HiFi, PC, Oven

Parameters Energy Management
DescriptionClass Examples
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3.2 Local energy management of the THMSVC class 
The first ideas on how to control a THMSVC EuP were presented in D-1.2 (Section 5.1), and for sim-
plicity we take the fridge as a representative of this class for the remainder of the discussion. The ap-
proach presented in D-1.2 was essentially a manipulation of the thresholds for the usual bang-bang 
control. for example, when the cost is high, the upper bound was raised by a certain amount (propor-
tional to the cost) such that the fridge could stayed of a little longer during costly times. 

With simulation it could be shown that this simple algorithm was already sufficient for load balancing: 4 
simulated fridges were sent 4 different cost profiles that were phase-shifted by 90 Degrees, succes-
sively. Essentially, the fridges synced to their respective cost-profile such that the combined power 
consumption was more balanced. 

To get a load forecast for a fridge using this algorithm on a specific cost-profile, the plan was to em-
ploy temperature forecasting. The idea is simple: The algorithm which runs on the real temperature 
measurements and the cost-profile is run beforehand on the simulated temperatures for a certain time 
period. That way, the load profile of any control algorithm (e.g. usual cost-independent bang-bang 
control) can be forecasted up to a certain degree.  

It was possible to develop a very sophisticated curve-fitting algorithm using least-square-error ap-
proximation for the temperature forecast. This algorithm even used constant time and memory, and 
could be run on the SmartCoDe nodes without using considerable resources. This algorithm has been 
described extensively in D-1.4. 

However, when moving from the simulation to the lab environment it became apparent that the tem-
perature forecasting algorithm can’t be used at the points where the temperature changes direction. 
That is, there is no seamless temperature forecast available which can be used over several off-on 
cycles, which was also explained in D-1.4. 

The solution to this problem was found shortly after D-1.4 was submitted: an algorithm which provides 
a load plan for the next off-on cycle shortly after the compressor was switched off. This load plan is not 
a forecast but a committed plan which will be executed as-is unless unusual circumstances cause a 
failsave bang-bang control to kick in. While this algorithm is not dependent of the temperature forecast 
any more, it can employ it for better stability and performance. The algorithm was presented first in D-
2.5. We describe the algorithm here again for completeness of this document. 

The core idea is to replace the usual bang-bang controller with a PI-controller that computes a load-
plan for the next Off-On cycle of the compressor. This load plan is then tweaked according to the cost 
profile, which in general will cause the maximal/minimal temperatures observed during this cycle to 
exceed or fall short of the temperature boundaries set. The PI-controller then counteracts these viola-
tions in the subsequent cycles. 

In an initial learning phase, usual bang-bang control is used. Apart from initial values for the parame-
ters used for temperature forecasting (see D-1.2), we also learn the normal duty cycle (Pn

Off, P
n

On). 
This duty cycle is used to parameterise a PI controller in the sense that the error values observed will 
manipulate this normal duty cycle.  Also, the real extremal temperatures (bu, bl) attained are deter-
mined, since they usually differ from the temperature bounds used for the bang-bang control (e.g. 
when the compressor is switched off, the temperature usually goes down still for some time, some-
times up to 1°C).  

After that, the node goes into planning mode, which works in the following way: 

1. During the on-going Off-On cycle, the temperature maximum and minimum (tmax, tmin) is de-
termined. 

2. After switching off, the node waits until the temperature rises strong enough (w.r.t. the slope) 
to predict the number of steps when the upper bound is hit. 

3. The PI controller now determines an initial schedule by looking at the difference between the 
observed extremal temperatures to the usual ones when using bang-bang control, i.e. el = tmin 
- bl , eu = bu - tmax. Also, the respective errors sums �el and �eu are updated and we compute: 
yl:= 1+Kp· el+KI· �el yu:= 1+Kp· eu+KI· �eu and (P’

Off, P’
On):= (yu·P

n
Off, yl·P

n
On) 

for certain factors Kp and KI (see below). For example, when the minimum temperature tends 
to be too low, the On-phase is shortened, and when the maximum temperature is too low, the 
Off-phase is prolonged. 

4. This initial schedule is now manipulated according to the forecast of the number of steps it 
takes to reach the usual bang-bang maximum by taking the median of the off-phase length 
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and the step forecast as new off-Phase, and scaling the On-phase linearly with it, resulting in 
a new schedule (POff, POn). 

5. The schedule is now multiplied by a factor f with 0.5 <f<1.5 such that the result  
f·(POff, POn) is maximally cost-effective with respect to the cost-profile. This is done by a 
straightforward search algorithm using different values for f, e.g. 0.5, 0.55, …, 1.5. 

The SmartCoDe node then sends back this load-plan and is committed to it until the next switch-off. If 
the temperature bounds are breached by an unacceptable amount due to drastic events like putting 
hot food in the fridge, a fail save bang-bang controller still can switch the appliance earlier if a bound is 
exceeded by more than 2°C. 

 

Figure 4 PI-based load-planning algorithm for THMSVC EuPs 

 

Figure 4 shows an overview of this algorithm. The choice of KP and KI was initially done by analysing 
the possible errors and initially set to Kp=0.3 and KI=0.15. KP = 0.3 means that a difference of 1°C  to 
the particular temperature bound would alter the respective cycle by 30% as a direct response, and 
since exceeding a bound by more than 2°C  is intercepted by the fail save bang-bang safeguard, the 
maximal alteration of the P-part is 60%.  Since the accumulated error-sum can grow larger, the lower 
value KI=0.15 was chosen for the integral part. 

After experimenting with simulation, the lab-setting and on the Buchberg demonstrator, the parameters 
used now are Kp=0.1 and KI=0.05, since this leads to a more stable behaviour even if the cost-profile 
is constant over the time frame in question and therefore there is no cost-tweak. Also, the algorithm 
was slightly adapted by using the temperature forecast to ensure that the computed load-plan never 
violates by itself the failsave bounds. 

Note that the choice of these parameters is not obvious. The problem is that the goals we have here 
are not the usual goals like stability when dimensioning a PI-controller. This PI controller computes 
initial load plans and inherently organizes deposits and withdrawals into and from the thermal capaci-
tance of the EuP. Since this type of application of a PI controller is new to the best of our knowledge, it 
is not clear in how far classical control theory is applicable here. 

The load plan as described above can also be extended by an estimation for the next Off-On cycle as 
follows: With the temperature forecast, the temperature after the first Off-phase according to the final 
load plan can be determined. This yields an estimation for the next error terms regarding the upper 
boundary temperature which, in turn, gives an estimation of the next POff. By using the same ratio of 
Off- to on-phase as for the current Off-On cycle, an estimation for the next (POff, POn) can be given, 
which then also can be cost-tweaked if there are already cost-profile values for this time frame avail-
able. 

With this extension, the EMU could be provided with a load-profile covering two off-on cycles, where 
the fridge is only committed to the first cycle; the second cycle is an estimation and can still be 
changed in the next round. However, these kinds of load plans would be appropriate for the variant of 
the global energy management approach described in Section 2.4. 
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3.3 Local energy management of the SCDSVC class 
The local control for a schedulable service (SCDSVC) EuP with a given deadline and cost profile is 
straightforward if the load profile for the chosen program is known: The SmartCoDe node simply tries 
to find a start-time within in the given time frame such that the product of load- and cost-profile is 
minimised. This is a simple optimisation problem which was easily be implemented on the SmartCoDe 
nodes. For the Buchberg demonstrator, however, the start-time was actually computed by the EMU 
(namely the ennovatis SmartBox), by sending it the deadline and the load profile, which then returned 
a start-time. This was done for easier implementation since this mechanism was already in place for 
the ennovatis SmartSwitches. It also demonstrates that the semi-decentralised energy management 
approach can be still combined with some centralised micro-management. 

However, in general computing the load profile is not as simple, since it might depend on several con-
ditions like the current water temperature which influences the length of the initial heating cycle. In 
fact, in D-1.5 an impressive example is given how much electrical energy can be saved when pre-
heated water is available. Another important factor in the case of a washing machine is the weight of 
the load. It should be possible for the manufacturer, who understands the process of the EuP best, to 
find a satisfactory estimate for the load profile. Also, inserting interruptions of the program when possi-
ble could be an option. 

In fact, in the course of the project it became clear that for the SCDSVC class, there has to be higher 
integration of general EuP control and energy management. With a retrofitting approach as it was 
used for demonstration purposes there is not much that can be done. For fridges and freezers, in con-
trast, with the algorithm presented above basically any such EuP can be retrofitted easily, since the 
algorithm learns everything there is to know about the EuP by itself, and the only thing to do is switch-
ing a compressor. 

When retrofitting SCDSVC EuPs like washing machines, the possibilities of fine-tuning the energy 
management algorithm suffer from limitations imposed by the hardware itself. Most of these appli-
ances currently present in the market don't have an interface through which an external controller 
could obtain any complex information from the device. For example, the washing machine that was 
used for testing the SmartCoDe energy management algorithm is interfaced with the SmartCoDe node 
by using two digital I/O lines: 

 The first line is used for transmitting the pulse that starts the machine operation. After that pulse is 
transmitted, there is no way for the SmartCoDe node to stop the machine. Thus, there is no possi-
bility to apply a more complex algorithm which would allow interrupts of the operation. 

 The second line provides the feedback information from the machine to the SmartCoDe node 
about the operation status: when operation is in progress, the logical `1` appears on the line, oth-
erwise is `0`. 

Especially it is not known which program the user was choosing when starting the machine, such that 
there was no choice but to use a worst-case load profile, derived from previous measurements, as a 
basis for the energy management. Of course, with such a worst-case profile it is illusionary to achieve 
something like freezers planning their consumption such that they avoid being switched on when the 
washing machine load profile peaks. 

3.4 Local cost-dependent energy management of other classes  
Regarding cost-dependent energy management, there are only two classes left regarding the classifi-
cation  

 The CHACON class represents appliances which are chargeable and (randomly) removed by the 
user. The most interesting representative here is the electric car. While devices like cell phones 
essentially also fall into this class, the energy consumption involved is too low to be of interest 
here. 

 The COMCON class is similar, but the user does not use the appliance directly, but it is deployed 
automatically, such that this deployment in principle could also be controlled. Examples are robotic 
lawn mowers or vacuums. The use of these devices is still very uncommon. 

Since there was no representative of these classes available for development, and since it was never 
the intention in SmartCoDe to cover every possible appliance, no specific algorithms have been de-
veloped for these classes. However, some conclusions can still be drawn. 

The CHACON class can essentially be treated similar to the SCDSVC class, since charging such a 
device is very similar to running a certain program, since in both cases the result is a certain load pro-
file (or plan) which can be scheduled. The difference here is the user interaction: When a user starts a 
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washing machine he already selects a program and therefore it’s not too much to ask for the additional 
input of a deadline; some washing machines offer something similar even today for simple conven-
ience purposes. 

When a user plugs in a chargeable device, however, there is no further user interaction involved. The 
user would have to input a time when he expects the device to be charged again, which means that 
also a new user interface is needed. However, if this would is available, the further proceedings can 
indeed be like in the SCDSVC case. 

The COMCON class was defined with the premise that the energy management would also encom-
pass the consumption of the charged energy (therefore providing “complete control”). That means that 
such appliance could also be used as a virtual storage, like the THMSVC class, but with much better 
properties: The charged energy does basically not deteriorate like in the case of the THMSVC class. 
And depending on the specific service, the usage can be postponed much longer and more flexibly 
than in the case of a freezer. 

The use of a robot vacuum, for example, could easily be delayed for half a day or more without signifi-
cant consequences. And if favourable conditions for charging arise in the near future, the operation 
could be scheduled much earlier to discharge the vacuum until then. 

 

4 Local Energy Providers 
Regarding the Local Energy Providers (LEPs), a similar classification has been done, with no major 
changes since D-1.1.1. This classification arguably proved to be not as useful as the EuP classifica-
tion, even though it is valid. While the EuP-classification allows to treat different appliances in the 
same manner, e.g. with the same software, this is not really possible here. While wind turbines and 
solar panels are both volatile energy providers according to the classification, they have very different 
characteristics, even if the interfaces for providing energy generation forecasts can be the same. Also 
two energy grids can be very different, e.g. regarding tariff models. Energy storages and local genera-
tors were not available in the project. 

Altogether the SmartCoDe project wasn’t able to develop a unified view on LEPs in the way that it did 
for EuPs. However, this was never in the core of the project. Models for the forecasting of photovoltaic 
generators and the windturbine on the demonstration site have been developed and are reported in D-
1.1.1, D-1.3 and D-1.6. The LEP classification is repeated here in Figure 5 and Table 5 for complete-
ness. 

 

Figure 5 Overview of the SmartCoDe classification of LEPs 
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Table 5 SmartCoDe classification of LEPs 

      Parameters   
Class  Abbrev. 

from 
Description installation from LEP to LEP Examples 

ENGRID  energy grid conventional 
energy pro-
vider 

feed-in 
possible 
(true/false) 

pricing 
forecast 
supply 
forecast 

feed-in to 
grid 

local electri-
cal power 
provider 
long-distance 
heating 

VOLAEP  volatile en-
ergy provid-
er 

energy 
source which 
depends on 
weather, day-
time etc. 

switchable 
(true/false) 

supply 
forecast 

on/off if 
switchable, 
weather 
forecast?  

wind turbine, 
water tur-
bine, solar, 
geothermal 

ENSTOR  energy stor-
age 

energy 
source which 
has to be 
charged 

storage 
capacity 

charging 
level 

charge / 
provide 

batteries, 
concrete 
heat storage 

LENGEN  local energy 
generator 

energy 
source which 
transforms 
some kind of 
fuel to energy 

fuel capaci-
ty 

fill level on / off block power 
generator, 
diesel gene-
rator 

 

 

5 Conclusion 
This document described the developments regarding the foundations of the SmartCoDe work pack-
age 1 during the project runtime. It showed how the global semi-decentralised approach was moti-
vated by networking and controlling considerations. The final protocols and message formats used are 
presented, with a discussion of possible options. 

On the EuP side, the basis for the local cost-profile dependent energy management was the EuP clas-
sification. By simulation and practical experiments, the local energy management could be refined and 
improved. Especially the PI-control based energy management algorithm is an original and unconven-
tional result. Possible improvements are discussed regarding the SCSVC class, whose energy man-
agement could not be tackled to the detail it was intended. 

 

 

 

 

 


