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1 Introduction

This report documents the modelling efforts in Task 2.3 for the system design of a SmartCoDe node. A
current version of the modelling and simulation environment with simulation examples can be delivered
to the commission upon request. Since the simulation environment consists of several components, we
provide a virtual image of a Linux environment (Ubuntu) for VirtualBox (or VMWare if preferred) having
the simulation environment already installed.

The simulation environment is based on the C++ System modelling and simulation framework SystemC
[9]. It extends the C++ languages by primitives for system modeling: concurrency, signals, events, han-
dling of simulation time and a simulation kernel. The SmartCoDe simulation framework also makes use of
the SystemC extension libraries TLM 2.0 [1], which targets abstraction of communication, and SystemC-
AMS 1.0 [10] for analogue and mixed-signal modelling. The wireless network simulation is based on the
SNOPS simulation framework [2]. Figure 1 summarizes the architecture of the simulation stack.

SystemC

TLM

SystemC-AMS

 Wireless Network Model
(SNOPS Framework)

SmartCoDe Functional Node Model

Energy Management Application
(Tasks 1.4, 1.5)

Figure 1: SmartCoDe Simulation Architecture

The development of the energy management application (the top layer in figure 1) is the focus of the tasks
1.4 and 1.5. For the purpose of this deliverable it exists only as proof-of-concept programming example
of how to make use the SmartCoDe simulation framework.

This work builds upon the efforts undertaken in work package 1, especially the classification of energy
using products (EuPs). The general idea is to base the node design on this classification. On the
hardware side, this could lead to different design variants depending on the EuP class, e.g. lighting
applications (class VARSVC) could be handled by simpler nodes, although the target is to provide a
hardware platform which is suitable for all EuP classes. In either case, the embedded software will be
different for each class in order to provide for each EuP class a matching energy management strategy.

It is recommended to read Deliverable D-1.1.1 before reading this report, since some concepts
introduced there are referred to in this document. This applies not only to the EuP classification, but also
the decentralised energy management approach.

A consequence of D-1.1.1 is that the SmartCoDe project needs a model which can be used to develop
a decentralised energy management algorithm as a basis for Task 1.4 starting in January 2011. A
standalone model of a SmartCoDe node is not sufficient, the whole communication infrastructure and
network needs to be modelled. At the node level, a high level API and a functional model are sufficient.

The rest of the document is structured as follows: Section 2 discusses the functional model of the Smart-
CoDe node, section 3 the network simulation framework, section 4 the implementation and section 5
discusses an example energy management algorithm.
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2 The SmartCoDe node functional model

There are three use cases for the SmartCoDe node functional model:

• Hardware / Software Co-Development

• Validating distributed energy management algorithms in within its communication context

• Prototyping SmartCoDe node / EuP integration

For these purposes the SmartCoDe simulation framework models the relevant parts of the hardware
(wireless transceiver, sensor and actuator-interfaces) as well as the software (embedded RTOS). Hard-
ware components are modelled using SystemC, SystemC TLM and SystemC-AMS. The software APIs
presented to application level code functionally resemble JenOS, the ZigBee SoC chosen for the Smart-
CoDe demonstrator.

SmartCoDe Node Model

Event Queue

Sensor 
Interface

Actuator 
Interface

Wireless
Transceiver

Energy
Management
Application

(Tasks 1.4, 1.5)

Timer

Wireless
Network
Model

More
SmartCoDe

Nodes

Energy
Management

Unit

EuP Model

Simulation of
EuP physics

(e.g. VSTSVC)

End User 
Model

Management Plane:

- Simulation Kernel /
Tracing & Logging

- Simulation Set-Up /
Parametrisation

Local Energy
Producer

Model

Figure 2: Architecture of the SmartCoDe functional node model embedded into the SmartCoDe simula-
tion framework.

Figure 2 reveals the inner details of the SmartCoDe functional node model and how it interacts with the
EuP and the wireless network within the simulation framework. The different elements are described in
more detail in the following sections:
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• SmartCoDe functional node model→ sections 2.1 and 2.2

• EuP model→ section 2.3

• Wireless network model→ section 3

2.1 SmartCoDe Simulation Framework: General Approach

In order to facilitate later porting of application code from the simulation framework to the SmartCoDe
demonstrator, the APIs between virtual SmartCoDe node and application code resemble the concrete
environment found inside the NXP/Jennic platform chosen for the SmartCoDe demonstrator. That means
that the offered operating system primitives are similar, not the concrete formulation of the API calls.

The energy management application to be simulated in the SmartCoDe simulation framework is written
in an event-driven style. This reflects common practice in embedded system programming. Even though
the NXP/Jennic platform does support multi-threading, the recommended way of writing applications is
to use only a small number of threads, usually just one, for application level code. Other threads handle
network communication tasks, network originated remote procedure calls (RPCs), as well as hardware
related tasks. True to the TLM paradigm, those other tasks are not modelled in detail (as would be the
case in hardware oriented modelling), but merely their latencies are accounted for. The OS model for
SmartCoDe node functional model can therefore forego true multi-tasking. Instead, there exists a single
thread for the application level code which is driven by a single unified event queue.

The downside of this approach is that CPU utilisation and especially contention is not accurately rep-
resented by the model. It was deemed of low priority for the SmartCoDe demonstration, because the
selected hardware platform is assumed to provide ample reserve in that respect. For this deliverable,
it was instead decided to focus on networking aspects (bandwidth and latency of the wireless channel),
as well as energy management aspects - providing a virtual platform for developing and proofing energy
management algorithms. Should the need arise later in the project, the issue will be revisited.

As depicted in Figure 2, the unified event queue is fed by the following event sources:

• Network events: Incoming packets, changed network variables

• Sensor events: Whenever new sensor values become available

• User interface events: Modelled as sensor events

• Timer events: For delayed or periodic execution

Low level networking tasks (ZigBee NWK and below) like routing and forwarding packets, maintenance
of tables and channel management are not exposed to the application level code.

Following the example of ZigBee, the SmartCoDe nodes do not currently handle wall-clock time. Timed
sequences are driven by the device-local clock, network interchanges are driven by relative time. This
assumption has consequences for the maximum allowable lifetime of network packets (how often and
how long they may be buffered), the minimum duty cycle of power cycling devices and the convergence
rate of distributed energy management algorithms. The issue may be revisited at a later time, if justified
by results of the energy management simulation.

2.2 Sensor and Actuator Models

Three different kinds of sensors are supported by the sensor interface:

• Periodically triggered sensors - periodically write sensor values into the event queue (the interval
is sensor specific)

• Single shot sensors - when activated, write exactly one sensor value to the event queue (after
exhibiting a sensor specific delay)
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• Externally triggered sensors - triggered by events from the physical domain, writes one sensor
value to the event queue

Common to all three sensor types are the following characteristics:

• Sensor values are represented as unsigned 16 bit integers

• The most recent sensor value (along with its age) is cached and can be queried without delay

• Sensors can be turned on and off (irrelevant for single shot sensors)

• If relevant, the sensor’s semantics can be declared by specifying ZigBee Cluster descriptors

• ZigBee-compatible sensor values can be sent to and received from remote nodes (using network
variables)

The interface is designed to support all sensors present in building automation, as well as some specific
sensors inside white box appliances with relevance to their function as virtual energy storages. What is
explicitly not abstracted is the mapping formula from physical dimension to sensor value. The ZigBee
standard is taken as guideline. In other cases the energy management application will need to handle
the mapping by itself.

User interface controls (which allow the consumer to control the EuP) are captured by the sensor interface
as well. Push buttons are implemented as a sensor that writes a "1"-value to the event queue. De-
bouncing is not necessary within the simulation. A hand wheel or slider for adjusting a level is modelled
as being connected to an analogue input which is periodically sampled. It is not intended to model
complex user interactions in the SmartCoDe node functional model. If necessary they can, however, be
modelled in the EuP connected to the SmartCoDe node. In that case it is the interface between EuP and
SmartCoDe node that is captured by the sensor & actuator interface.

The actuator interface is even simpler, it is modelled after a single analogue output, represented by
unsigned 8 bit integer. That should be sufficient for the purpose of simulating energy management
applications.

2.3 Physical EuP simulation

According to the classification of EuPs (as described in deliverable D1.1.1), the EuPs need to be sim-
ulated in a level of detail adequate for calculating their energy consumption. The simulation framework
contains for each identified class an abstract implementation that can then be further specialized into
concrete devices. Device usage can be either deterministic for optimizing the energy management al-
gorithm for certain scenarios, or the device usage patterns can be fed by a statistical model provisioned
from publicly available data-sources of typical energy usage, such as the REMODECE project(see [3]).

Besides network communication and energy consumption, the following points represent further quality
considerations (metrics) for candidate energy management algorithms:

• Additional fatigue on devices which may be designed to endure only a limited number of power
cycles

• Conformance to consumer expectations, or how often consumers may be compelled to make use
of ’override’ facilities because of dissatisfaction with default energy management policies

EuPs are connected to the SmartCoDe nodes via the sensor and actuator interfaces; they have to im-
plement the secondary side of these interfaces. For most device classes, the actual physics inside the
devices are of no interest to the simulation framework. Power profile, communication dependencies and
usage patterns sufficiently abstract what the energy management unit needs to know about a particular
device.

This is not true for virtual storage devices (class VSTSVC). For the EuPs we consider in SmartCoDe, the
VSTSVC-class will mostly contain devices providing a thermal service (heating, cooling). The respective
thermal process (e.g. room temperature or the temperature inside a fridge) is modelled in SystemC-AMS.
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The simulation framework already contains an exemplary model of a VSTSVC-class device that can be
parametrised to function either as an electrical heating or cooling device.

SystemC-AMS is used for modelling the temperature since it provides the capabilities to model such con-
tinuous processes in discrete time. At TUV, there is prior experience in modelling thermal behaviour using
a simplified pseudo-electro-statically equivalent approach, based on low-pass filters [7]. The mechanism
is depicted in figure 3.

VSTSVC-
Node

Actor Low-pass Sensor

Service Model in SystemC AMS

VSTSVC-Model

Temperature
Co
nt
ro
l

Figure 3: Model of an Virtually Storable Service (VSTSVC) EuP in SystemC

Out of scope of the physical simulation is a detailed thermal model of buildings. The SmartCoDe project
focuses its efforts on management of electrical energy usage in homes and offices, not on thermal
management. However, in principle the physical models in SystemC-AMS could be coupled, e.g. to
model neighbouring rooms and the interdependence of their respective temperatures.

A crucial aspect is the effect of consumer behaviour. For a realistic simulation, consumer behaviour has
to be incorporated into the simulation, e.g. switching of lights, but also influencing the thermal processes
in the model indirectly (e.g. opening window). In how far and how detailed consumer behaviour has to
be modelled within SmartCoDe will be determined within work packages 1.4 and 1.5.
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3 Network Simulation

The SmartCoDe node functional model recreates select features of the ZigBee [13] and IEEE 802.15.4
[6] stacks. The main focus is:

• Realistic handling of broadcast messages

• Realistic handling of passive delivery to power-cycling devices

• Support for network variables (ZigBee cluster attributes)

IEEE 802.15.4 [6] is a low power, low complexity wireless networking protocol. One of its core assump-
tions is that the duty cycle of the channel is but 1%. The challenge for the networking simulation is
to verify that the application uses the network in a way compatible with the design assumptions of the
underlying networking technology. Not in scope of the SmartCoDe node functional model is a realistic
implementation of the routing protocol, because priority is given to the simulation of completely commis-
sioned networks where all routes have already been established. The commissioning process, including
key-establishment, will be handled at a later stage.

Realistic handling of broadcast messages involves maintenance of broadcast transaction records as de-
scribed in the ZigBee standard [13]. With respect to TLM-style handling of broadcast messages, the
radius field (together with other MAC and NWK level headers) will be handled as a generic payload
extension to TLM’s built-in facilities. The desired outcome is that the relative complexity of broadcast
handling does not translate to high simulation overhead. The generic payload is instantiated only once
and propagated (rebroadcast) throughout the network without excessive data copying within the simula-
tion framework. Bandwidth costs and effects on noise are accounted for nonetheless.

Passive delivery is the ability for end devices to turn off their receiver most of the time and only periodically
poll their router. The mechanism is specified in [6]. Power cycling end devices periodically send a MAC-
level data-request command to their ZigBee router which has to answer within a predetermined time
during which the end device keeps its receiver on. From a TLM perspective, the data-request command
message can be heavily reused since it lives only for a very short time, whereas the lifetime of regular
messages is extended until they are either delivered to all end devices or expire in the router’s buffer.

Network variables, finally, are a convenient ZigBee mechanism to make the network transparent to the
application. The application can be written in ignorance of where it gets its sensor data from, i.e. which
other nodes it is bound to. Network variables can be read and written to, or the remote node can be
configured to report attribute changes automatically. For the simulation it means that binding information
is read from the configuration file and the network is considered readily configured at simulation startup.
Propagation of sensor data is then handled by the virtual ZigBee stack and does not have to be explicitly
coded in the energy management application.

The physical layer radio model is crucial to evaluate the system. Through an environment model, all
propagation effects can be taken into account. As a result, a realistic communication simulation can be
used for validating algorithms and approaches.

3.1 Previous Work

The radio model is based on previous work developed as part of the PAWiS (Power Aware Wireless
Sensors) and SNOPS (Sensor Networks Optimization by Power Simulation) projects.

Discrete Event Simulation of Wireless Sensor Networks: PAWiS Framework

During the PAWiS project [11], a framework for modelling ultra low power sensor networks was devel-
oped [4]. The PAWiS Framework is based on OMNeT++ [12] discrete event simulator, oriented primarily
for building network simulators. The main purpose of the simulation was to model power and energy
consumption to estimate the network lifetime.

PAWiS Framework included a radio and propagation model, capable of evaluating attenuation, collisions,
noise and interferences. Every transmission in the network was transformed into as many point to point
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messages as neighbour nodes within the range. PAWiS environment model is passive and only tells the
nodes which nodes receive their messages and with how much attenuation.

OMNeT++ is a network oriented simulator, based on C++. Hardware models have to be written in C/C++.
Otherwise, co-simulation is required.

Hardware models in PAWiS, especially microcontroller model, did not have the accuracy necessary for
estimating power consumption, which requires some knowledge about the time required by the processor
to finish its tasks. Instruction Set Simulators (ISS) or cycle-accurate models are needed to precisely
determine this.

Transaction Level Modelling of Wireless Sensor Networks: SNOPS Framework

Transaction Level Modeling (TLM) is a high-level approach for modelling digital systems [8]. Communica-
tion is abstracted into transactions. This abstraction pursues not only a performance boost but improving
the interoperability as well. Transactions are requested through interfaces, and go in and out of the
modules through the corresponding sockets. Hence, module implementation is kept independent of the
communication model.

TLM is however, originally oriented for bus communication abstraction, which is a priori completely dif-
ferent from wireless communication. Nonetheless, a correspondence can be established between the
elements of a wireless communication and TLM basic concepts [5].

The framework developed during SNOPS project is based on the PAWiS Framework. Nevertheless,
OMNeT++ functionality has been completely replaced by SystemC [9] and TLM.

The environment model is very similar to the PAWiS model. However, in the SNOPS case, the environ-
ment takes part in the communication indeed, by actively distributing messages from sender to receiver
nodes.

Unlike in PAWiS, in the SNOPS Framework there is only one physical copy of the message for every com-
plete end-to-end message delivery, including all intermediate hops. This implies a significant improve-
ment in terms of simulation performance [2]. Furthermore, as OMNeT++ simulation core is replaced by
SystemC, SystemC or even SystemC-AMS system models can be directly integrated in the simulation.

In the course of the SmartCoDe project, the SNOPS Framework is extended: to efficiently handle broad-
casting custom SmartCoDe fields are added to the internal SNOPS generic payload extension. This is
advantageous, compared to implementing new generic payload extensions which in case of broadcasting
would grow hugely in a short time interval. The new features are contributed back to SNOPS software
increasing its robustness and supporting future applications.

3.2 Physical Layer Model

SmartCoDe’s physical layer model of the network is built upon the SNOPS Framework. The main char-
acteristics of the SmartCoDe simulation framework’s physical layer model are described below.

• Models a generic transceiver which lets the simulation engineer choose a wide range of parameters:
Modulation, data rate, frequency bands

• Estimates transmission ranges based on attenuation, which depends on the distance between
nodes. Attenuation formula can be configured according to the scenario, either by setting the
corresponding attenuation exponent or by providing a custom adjacency matrix calculation method.
Additional attenuations, such as those due to obstacles can be also be implemented.

• Models collisions and noise from other transmitting nodes, as well as interferences coming from
other communication channels.

• Node displacement, joining and leaving automatically trigger a recalculation of the attenuation ma-
trix. Other time-variant effects can be taken into account as well by implementing additional atten-
uations.

The implemented features comprise a comprehensive radio model and form a robust basis for tasks 1.4
and 1.5 – development of the SmartCoDe distributed energy management algorithm.
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4 Implementation of the SmartCoDe Functional Model

Figure 4, is a UML diagram of the SmartCoDe functional node model. The classes and its members are
described below.

sensor_interface

+get_value(): uint16_t

smart_sensor_node
-sensor: sensor_interface* [5]
-actuator: actuator_interface*

+actuate_eup(level:uint8_t): int
+get_last_sensor_value(sensor_address:uint8_t): int
+register_sensor(sensor_:sensor_interface* ,
                 sensor_address:uint8_t ): bool
+register_actuator(actuator_:actuator_interface*): bool

sn_varsvc

1

5

smcd_event
+event_kind: enum
+kind: event_kind

+smcd_event(kind_:event_kind=NO_KIND)
+get_kind(): event_kind
+set_kind(kind_:event_kind): void

sn_skdsvc

smart_node_base
+event_queue: tlm_utils::peq_with_get<smcd_event*>
-tx_power: double
-bit_rate: double

+smart_node_base(nodeType:std::string,
                 name:sc_core::sc_module_name)
+main_loop(): void
+send_message(trans:snops::SnopsTransaction): void
+initialize(): void
+handle_event(event:smcd_event): void
 acceptAirDataStart(snops_signalPower:double,
                    snops_transmissionID:sc_dt::uint64): bool
 onAirDataArrived(snops_transData:tlm::tlm_generic_payload*,
                  snops_bitCount:unsigned int,
                  snops_bitErrors:unsigned int,
                  sender:snops::AirClientModule*): void
 onAirDataTransmitted(): void
 calcBitErrors(snops_Snr:double,
               snops_BitCount:unsigned int): unsigned int
 calcInterferingNoise(snops_TransmissionID:sc_dt::uint64): double

actuator_interface
-actor_max_level: uint8_t
-actor_delay: sc_core::sc_time

+actuate(uint8_t): bool
+set_actor_max_level(val:uint8_t): void
+get_actor_max_level(): uin8_t
+set_actor_delay(val:sc_core::sc_time): void
+get_actor_delay(): sc_core::sc_time

1

1

...

Figure 4: Inheritance and composition relationships within the SmartCoDe simulation framework. The en-
ergy management algorithm is to be implemented by overriding function handle_event in the subclasses
of smart_sensor_node.

4.1 Smart Node Base Class

Class smart_node_base serves a dual purpose: It interfaces the SmartCoDe simulation framework to the
SNOPS wireless simulation framework thereby serves as the base class for all SmartCoDe functional
node models. All parameters, virtual methods and callbacks required by the SNOPS framework are
implemented, and the functionality of participating in wireless networking simulation is offered to derived
classes. In Figure 5, attributes and methods of the smart_node_base class are shown.
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smart_node_base
+event_queue: tlm_utils::peq_with_get<smcd_event*>
-tx_power: double
-bit_rate: double

+smart_node_base(nodeType:std::string,
                 name:sc_core::sc_module_name)
+main_loop(): void
+send_message(trans:snops::SnopsTransaction): void
+initialize(): void
+handle_event(event:smcd_event): void
 acceptAirDataStart(snops_signalPower:double,
                    snops_transmissionID:sc_dt::uint64): bool
 onAirDataArrived(snops_transData:tlm::tlm_generic_payload*,
                  snops_bitCount:unsigned int,
                  snops_bitErrors:unsigned int,
                  sender:snops::AirClientModule*): void
 onAirDataTransmitted(): void
 calcBitErrors(snops_Snr:double,
               snops_BitCount:unsigned int): unsigned int
 calcInterferingNoise(snops_TransmissionID:sc_dt::uint64): double

Figure 5: The SmartCoDe functional node’s base class

It is assumed that every node in the simulation is connected to the network via wireless and maintains its
own event queue. Hence, this is exactly what the smart node base class provides.

In order to communicate through the SNOPS Framework, the module inherits from SNOPS AirClient-
Module class and implement five virtual methods:

• acceptAirDataStart - Entrance point for received messages: if transceiver is in listening mode,
available, and received signal power is over the receiver sensitivity threshold, the message can be
received. Otherwise, it is ruled out and considered as noise.

• onAirDataArrived - Once accepted, the reception process starts. This method is called when
reception is completed and data is available. In the SmartCoDe simulation, when a message is
received, it is encapsulated into an event and added as an untimed event to the event queue.

• onAirDataTransmitted - Returns control to the node once the transmission to the air is finished.

• calcBitErrors - Polymorphism is required here, as bit errors depend on the modulation, which
is defined by the simulation engineer. As the NXP/Jennic transceiver operates in the 2.4 GHz
frequency band, the implementation of this method corresponds to the only modulation defined
by IEEE 802.15.4 Standard [6] at this frequency, which is offset quadrature phase shift keying (O-
QPSK).

• calcInterferringNoise - Models noise coming from other channels. In SmartCoDe, all signals
are transmitted through the same channel, so the ideal case of Adjacent Channel Rejection Ratio
(ACRR) is considered.

In order to support different kind of devices and different event handling, two virtual methods are defined:

• initialize - All initialization data shall be set up here. In addition, the first event, if any, is added to
the queue at the corresponding time.

• handle_event - Called whenever an event is collected. Depending on the kind of the event, the
appropriate action is started.

The following two methods are also provided by this base class.
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• main_loop - Is in charge of collecting events and calling the handle_event method. When there are
no more events at the current time, it also waits till the next instant in which there is a new event,
i.e. advances the simulation time.

• send_message - sends the message to the air with the corresponding transmission parameters,
such as the transmitting power or the transmission delay. These parameters are defined by the
transceiver used. NXP/Jennic values are used by default.

4.2 Events

As stated in Section 2.1, the simulation will follow an event- driven paradigm. These events are appended
to a unified event queue, provided by TLM. It permits adding timed and untimed events to the queue.
Whenever the last untimed event is collected, the clock is advanced to the time of the next event.

Events are modelled as subclass of the TLM generic payload, they therefore provide a data pointer that
supplies the associated information. Since messages or sensor received values are also modelled as
events, they must contain a pointer to the message or value received

In view of the fact that the event queue comprises all kind of events, which trigger completely different
tasks, a variable containing the kind of the event is required. Therefore, several type of events have been
implemented.

• Periodic event - Nodes are usually duty-cycled. Thus, this event triggers the beginning of the
active state. In the handle_event method, the next periodic event, at the corresponding time must
be added to the queue.

• Message arrival event - The message is attached to the event in the transaction data pointer.

• Schedule event - Use case: schedule turning on or off the device depending on the forecast
arrived.

• Sensor event - Some sensors send information to the node at specific times. Enclosed in event’s
data pointer must be the value sensed.

These types are not fixed and can be extended depending on the requirements.

4.3 Sensors and Actuators

Sensors and actuators are dependant on the connected EuP. However, a common interface has been
defined for two main reasons: Firstly because both subsystems are not accessed directly, but from the
base class; and secondly because this implementation aims to provide a uniform top level API to the
simulation engineer.

There are two implementation aspects related to sensors and actuators. The first one deals with the
implementation of the physics measured by these sensors. The second one is how the information
between the sensor and the node, or the node and the actuator, is exchanged. In Figure 6, both aspects
and the way they are connected to the framework are described.

In the first case, physics of the sensed values and implementation details of sensors and actuators, must
be implemented as a subclass of sensor interface and actuator interface classes, respectively. Then,
virtual methods get_value and actuate, have to be implemented.

Using SystemC as the simulation kernel permits modelling the physics as analogue systems using
SystemC-AMS.
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Figure 6: Architecture of the two implementation aspects concerning sensors and actuators

In order to model the power consumption, state machines provided by the SNOPS Framework are used.
These state machines are built in such a way that only possible transitions between states are allowed.
Hence, once the state machine is configured, there is no possibility of triggering an erroneous state
transition, which is usually a source of errors very difficult to detect. Every state has an associated power
consumption value. Thus, power consumption can be obtained by maintaining a finite state machine of
the device and requesting the power consumption value at the current state.

Every sensor node must be a subclass of the smart_sensor_node class. Each smart sensor node con-
tains one actuator and three sensors (power, temperature, and specific sensor). When a device is imple-
mented, actuators and sensors must be registered at the node. In the case of the sensor, as there are
several, an address parameter must be provided.

As long as the sensors and the actuator have been registered in the node, they can all be accessed
through the interfaces provided to this end: actuate_eup and get_last_sensor_value.

4.4 Top Level API

This section summarizes the implementation such that only functions that concern the simulation engi-
neer are described.

Table 1 depicts all functions provided by node parent classes that are used by the energy management
application in order to configure and interact with the low level features.

The Application Programming Interface (API) provided can be split into two main aspects: Setting up or
configuration of the simulation and interaction with lower level functionalities.

Configuration

In order to set up a simulation the programmer has to define his devices. Sensor nodes must inherit from
smart_sensor_node, while other not sensing devices connected to the network must inherit directly from
the smart_node_base class.
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API Function Description
initialize Configuration of the node. Initial event (if any) added to

the event queue
handle_event Called when an event is collected. Switch among the

tasks corresponding to each event
send_message Sends a transaction to the air
register_actuator Registers the implemented actuator in the node class
register_sensor Registers the implemented sensor in the node class at

an specific address
get_last_sensor_value Obtains the last sensor value available at the node
actuate_eup Sends to the node the actuation directive

Table 1: Node API Functions

In both cases, initialize and handle_event methods must be implemented. If an internal event, such as
a periodic event, is required for the current device, the initial events have to be placed at the event queue
in the initialize method.

In the case of a sensor node, the actuator and the sensors must be implemented and registered (through
register_sensor and register_actuator).

Functionality

Wireless communication functionality is limited to sending and receiving messages. To send a message,
the method provided is send_message, whose only argument is the transaction containing the message
to send. Messages are received through the event queue, in the handle_event method, and can be
identified by the event kind RCVD_MSG.

Events can be either configured or identified by the getter and setter functions set_kind and get_kind,
respectively. An event can be added to the event queue by calling the method notify, with the event as
an argument. A second parameter with the time can be added in case of timed events.

Measured values by the sensors are accessed through the method get_last_sensor_value.

Finally, when the energy cost is available and actuation on a specific node is required, it can be achieved
by calling the method actuate_eup.
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5 Example

To illustrate how to use the SmartCoDe simulation framework and to provide a base for the work of tasks
1.4 and 1.5, an example network consisting of several EuPs (class VSTSVC) and an energy management
unit, has been modelled (Figure 7). In the decentralised approach described in D-1.1.1, Section 5,
the energy management unit issues energy management directives in the form of cost functions to the
VSTSVC nodes. The cost function is computed out of several parameters, e.g grid tariff and renewable
energy availability, and has the general goal to steer the EuPs in the network such that a certain network
load profile can be met.

Since the typical SmartCoDe application scenario contains several VSTSVC devices (like refrigerator,
freezer, electrical heating, air-conditioning), and because the VSTSVC class is the most complex to han-
dle, the example focuses on this class and features a network exclusively comprised to the VSTSVC
devices. Probably the most interesting challenge of the decentralised approach is achieving load balanc-
ing of such VSTSVC devices (see D-1.1.1, Section 5.1).

The VSTSVC-network example allows exploring this problem once there are approaches developed in
task 1.1 available.
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Figure 7: simulation scenario with different VSTSVC EuPs

Another question is in what form the cost function should be distributed over the network. There are
many possible scenarios:

• A general cost function for the whole network. This has the disadvantage that it makes load
balancing difficult. A possible solution are load balancing subnets, e.g. subsets of VSTSVC devices
which exchange messages for load balancing.

• Different cost functions for different subsets of the EuPs in the network, e.g. for different device
classes or different predefined balance groups up to single devices.

• The time span covered by the cost function could either be uniform (e.g. 24 hours), or might
depend on the respective group in an approach using different cost functions; e.g. we might not
need the energy cost in 12 hours to manage a fridge.
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• The time resolution of the cost function can also be uniform (e.g. 10 minutes as it is suggested
by D-1.1.1, see Section 4.1 there), but it could also get more coarse the more into the future the
cost values are, e.g. hourly. This would reflect that VSTSVC nodes managing more inert thermal
loads (like air-conditioning), where knowing the cost in 24 hours could be useful, will not need this
information with a ten minute resolution.

Regarding the cost function, several algorithms have to be developed:

• An algorithm for the energy management unit which computes (one ore more) cost functions out
of the network load profile and other available data like the wind turbine power production forecast.
This has not be considered yet and will be worked on in Task 1.4.

• An algorithm for each EuP class as defined in D-1.1.1. which runs on the respective SmartCoDe
node. It has to incorporate the cost function into its control task.

With respect to the node algorithm, the cost function might be of little significance for certain EuP classes.
The VARSVC class, for example, offers little possibilities regarding energy management as it has been
pointed out in D-1.1.1, Section 2.2.3. This is not the case for the shiftable loads of VSTSVC devices.

Figure 8 shows a trace of a simulation of a VSTSVC model configured as a heater which has to keep
the room temperature between 20◦C and 25◦C. After 10000 sec, the first cost function is received; the
values of the cost function which was valid at that time is shown at the bottom. In this experiment
the cost function had a resolution of 4 bit and was randomly generated. Before the first cost function
arrives, the node performs a simple 2-point control. After a cost function is received, the control algorithm
implemented in this example takes also the medium cost of the next 30 minutes into account. When this
cost is low, the heater will be switched on even if the lower threshold of 20◦C s not reached yet, and vice
versa.

In Figure 8 it can be seen how the temperature (upper graph) sinks during expensive times since the
heater (middle graph) stays turned off, and how it rises during cheap times. It also shows how the
switching frequency rises as soon as the cost function-based control kicks in. This might be an unwanted
effect; as described in D-1.1.1, Section 2.2.5, some EuPs might have limits to their switching frequency.

Figure 8: Simulation screenshot

This example illustrates how the simulation environment and the executable specification of a VSTSVC
SmartCoDe can be used to evaluate different algorithms for cost function-based energy management.
The algorithm used in this experiment was very simple. More advanced algorithms can be developed if a
forecast of the temperature depending on different control decisions is incorporated. Using the fact that
the temperature can be modelled using a lowpass in the time domain [7], an approach using a discrete-
time model for a lowpass has been implemented. A lowpass in the discrete time domain can be modelled
as

yi = αxi + (1− α)yi−1 (1)

where xi and yi are the input and the output of the lowpass at time i, respectively, and yi−1 is the output
of the lowpass at the previous time i − 1. The factor 1 ≤ α ≤ 0 is the so-called smoothing factor and
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characterises the lowpass. A good estimation of α can be used to predict the temperature. If we solve
equation 1 for α we get

yi − yi−1

xi − yi−1
(2)

That is, we can determine α out of the input to the system and successive measurements of the tem-
perature. This approach has been tested in the simulation environment, and stable estimates of α could
be generated that were used for temperature predictions. However, no algorithms for the VSTSVC node
have been developed yet which can make use of temperature predictions; this will be part of the upcom-
ing task 1.4. With the simulation environment developed for D-2.2, these and other questions within the
tasks 1.4 and 1.5 can be investigated.

6 Conclusion and future work

This report documents the executable specification of the SmartCoDe node. The modelling efforts are
driven mainly by considering what the main problems are to tackle next within SmartCoDe. Since the
energy management algorithms in a decentralised setting are to be developed next, a simulation frame-
work is provided where these algorithms can be tested and different approaches can be compared. This
means to concentrate on network aspects, provide only a functional model for the nodes, and also model
physical effects like the change of the room temperature over time. The simulation framework provides
a robust basis for tasks 1.4 and 1.5 – development of the SmartCoDe distributed energy management
algorithm.

Since SystemC is very flexible, the simulation framework can be extended and refined where necessary
for future endeavours. For example, the architecture model of the SmartCoDe node (D-2.3) can be inte-
grated into the simulation framework as well. It is also possible to integrate an Instruction Set Simulator
(ISS) into the node model for software development. A SmartCoDe network consisting of nodes modelled
in different abstraction levels (functional, architectural, ISS) can be simulated too (mixed level simulation).
That way, simulation performance can be maintained while still being able to simulate a detailed node
model within the network.
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Abbreviations and Definitions

API Application programming interface
EMU Energy Management Unit
EuP Energy Using Product
OS Operating System
PAWiS Power Aware Wireless Sensors
SNOPS Sensor Network Optimization by Power Simulation
TLM Transaction Level Modelling
TUV Vienna University of Technology
VARSVC variable service
VSTSVC virtual storable service
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