



# An Architecture for Energy Management in Smart Appliances

Christoph Grimm
Franz Lukasch
Markus Damm
Stefan Mahlknecht

### Energy Management @ Home?

Energy management techniques are well known for large facilities.

#### But:

Energy management for smaller buildings and environments has different, new and specific challenges!



# **Buildings and Environment**





An Architecture for Energy Management in SmartAppliances

# Outline

- Energy Management in Buildings and Environments
- Requirements and Objectives
- SmartCoDe Architecture
- Outlook

### **Energy Management Forecast**





An Architecture for Energy Management in SmartAppliances

5

## **Intelligent Standby**

- Switches off services that are not needed.Principle well known e.g. from PC:
  - Appliances whose service is not needed are switched into "sleep" state
  - Once a user needs service, device wakes up
- Appliance decides wheather service is needed. Required:
  - Many external sensor data
  - Dependable scenario recognition
  - Networking & remote control of appliances



### Remote Metering

Smart meter provides individual time profile of power consumption at home

#### **Power Grid:**

Smart meter is preconditioning for future time-dependent billing by Grid operator / ISO.





#### Home/Office user:

Information on usage of power (awareness).

Future also:
Association of
consumption with
appliances and services



An Architecture for Energy Management in SmartAppliances

7

# Demand Side Management in Buildings and Environment!

Timely planning of consumption of energy

- Generators:
   Grid, Wind Turbine, Photovoltaics, Electric Vehicle
- Plannable Consumers:
   HVAC, Electric Vehicle, Refrigerator, Oven, ...
- Consumers with known use patterns: TV (evening, Sat/Sun), ...
- Electric lighting, Other users
- Constraints: Cost of power exchange of estimated/planned power consumption, power grid, weather forcast, ...



### **Outline**

- **Energy Management in Buildings and Environments**
- Requirements and Objectives
- SmartCoDe Architecture
- Outlook



An Architecture for Energy Management in SmartAppliances

# Infrastructure for Energy Management in **Buildings and Environment**



### Low-Cost

We might want to make every single appliance "smart"

Thumbs rule - Embedded Systems in Consumer market cost up to 3.141 \$



#### **Consequences:**

- 1. Only fully integrated (SoC, SiP) meet cost requirements!
- 2. Wireless communication or PLC? Wireless communication likely cheaper?



An Architecture for Energy Management in SmartAppliances

11

### **Security and Privacy**



- High potential for misuse+> High security required
- Installation usually by uneducated staff

#### Consequences

Support for assignment of addresses and distribution of keys must be implemented!

# **Ultra-Low Power Standby**

- Permanent DSL connection 131 kWh/year (~Refrigerator!)
- 100s of nodes in small building, 100.000s in larger facilities
  - Standby, but able to communicate (~10mW) and wake up!
  - Standby power should be < 100mW</li>
- Standby power is in conflict with cost efficiency!
  - 2 power supplys: 1 for low-power standby, 1 for operation
  - External components

Consequences
Integrated low-power power supply unit (PSU) that can operate grid-connected!



An Architecture for Energy Management in SmartAppliances

13

### **Outline**

- Energy Management
- Needs and Objectives
- SmartCoDe Architecture
- Outlook





### Communication

- SmartCoDe node uses ZIGBEE/RF communication (also PLC possible, but other project ...)
- Structured network, mesh-routing possible (increases dependability)
- 1st prototype will use existing ZIGBEE chipset with adopted ZIGBEE communication profile

### High Voltage Chip

- PSU: Non isolated mains powered wireless node supply
  - Up to 100mW of output power at 3,3V output voltage
  - High efficiency
  - Mostly integrated
  - Ultra low standby consumption
  - Low EMI
- Sensor interface to hall sensor for power metering
- Driver for power switch (230 V), e.g. to switch main PSU on/off



An Architecture for Energy Management in SmartAppliances

17

## **Ultra Low Power Supply - Approaches**

- Capacitive Approach
  - Efficiency of up to 85%
  - External X2 capacitor needed
  - Integrated rectifier bridge
  - 2<sup>nd</sup> stage SMPS needed
  - Low EMI
  - Reactive input power



- Switched Mode Approach
  - Efficiency of up to 90%
  - Efficiency / EMI tradeoff
  - External rectifier needed
  - External high voltage switch needed
  - Controlled input voltage utillization



An Architecture for Energy Management in SmartAppliances



### SmartCoDe SiP

System in Package = "SiP" – all in one package!



 "Dies" (=Silicon chips) are in one package, connected by bonding wires



An Architecture for Energy Management in SmartAppliances

19

# **Development tools**



### **Outline**

- Energy Management in Buildings and Environments
- Requirements and Objectives
- SmartCoDe Architecture
- Results and Outlook



An Architecture for Energy Management in SmartAppliances

21

### SmartCoDe Virtual Prototype, PCB, SiP

SmartCoDe is work in progress!

- Available in 12/2010:
  - Virtual prototype for simulation of smart home
- Planned for 2011:
  - Demo Kit, PCP Prototype
  - Models of Consumers, Producers, ...
- Maybe in 2012:
  - SiP Demonstrator

**Overall Demonstration Site** 



# Thank you!



An Architecture for Energy Management in SmartAppliances