

Building Simulation and Control

Gerhard Zucker Austrian Institute of Technology Energy Department

Building Simulation

- Thermal model of the building
- Coupled electric and thermal simulation of the energy systems
 - Heating, ventilation, air condition
 - Lighting
 - Heat pump, solar thermal, photovoltaics
- Simulation of internal loads
 - Occupancy
 - Computers, white goods etc.
- Outside climate
 - Temperature, humidity, solar radiation
- Create a complete multi-domain simulation of building and environment

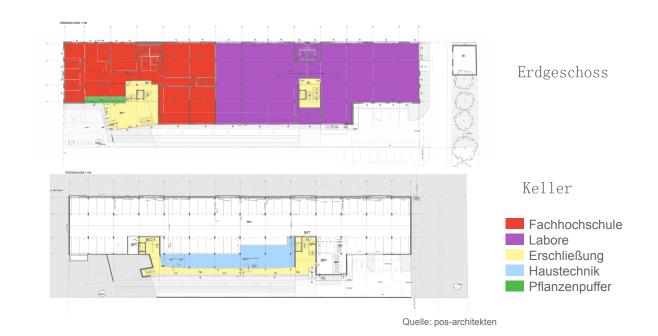
Goals

- Optimization
 - Energy Efficiency
 - Use of self-produced energy
 - Grid-friendliness
 - Costs
- Failure Detection
 - Comparison of real values with simulation
- Virtual Plant
 - Participation in energy stock exchange

ENERGYbase

ENERGYbase: Office Building – Passive House Standard

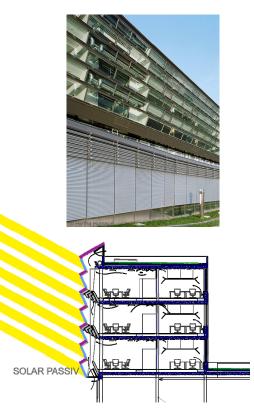
South View



North View

ENERGYbase: Usage

ENERGYbase: Usage


ENERGYbase: Facts & Figures

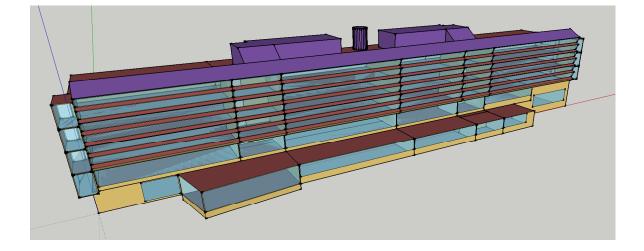
- Passivhouse Standard
- 400m² photovoltaic systems
- 300m² solar thermal collectors
- Plant buffers for air conditioning
- Heating: Heat pump / concrete core activation
- Cooling: Free Cooling (groundwater pump)/ concrete core activation, supported by solar cooling

Photovoltaic Systems

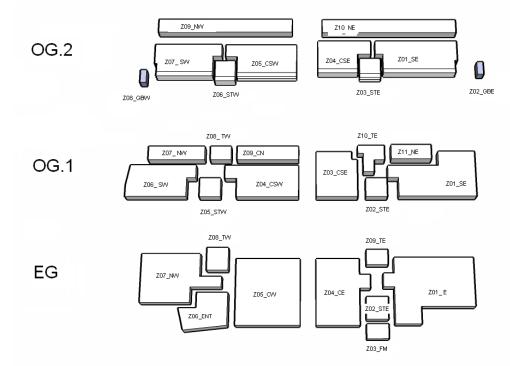
- PV modules integrated into faccade
- Act as blinds for south offices by reducing direct solar radiation
- Orientation and tilting optimized for maximum electric yield
- Comparison of different technologies in long term tests

Plant Buffers

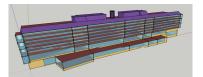
- Ecological humidification and revitalization of air
- Comparison of air qualitiy when using inside or outside plant buffers
- Researching the possibilities with plant buffers



Quelle: pos-architekten



Modelling


ENERGYBase in SketchUp & TRNsys

EnergyBase in SketchUp & TRNsys

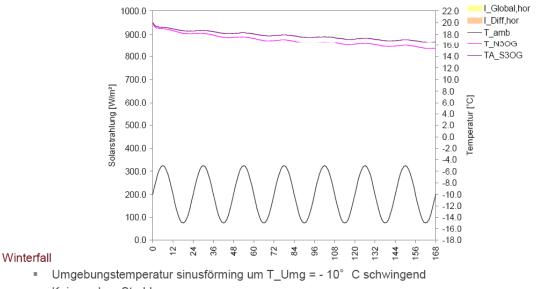
68 Zones758 walls, ceilings and floors59 different wall structures66 different layers146 windows8 different window structures

ENERGYbase - Simulation

Goal

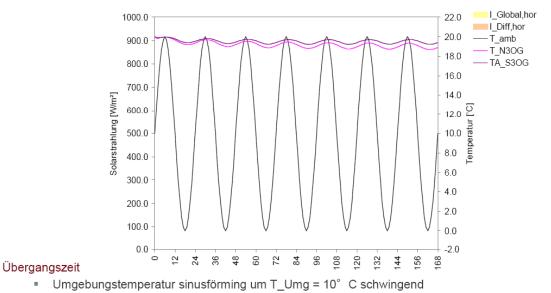
 Identification of thermal dependencies of ENERGYbase from outside radiation and temperature

Method


- Using datasets for weather in representative weeks
- Simulating representative room air temperatures in northern and southern office on the third floor

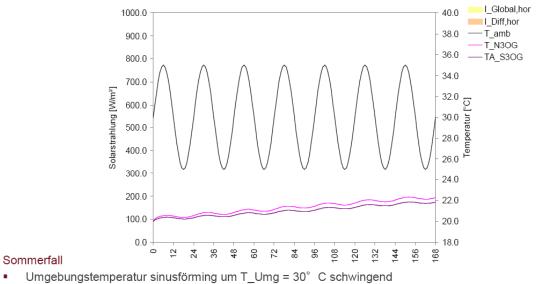
Scenarios

 Typical winter, summer and season changes with idealized outside air temperature and solar radiation


Szenario S2

- - Keine solare Strahlung .

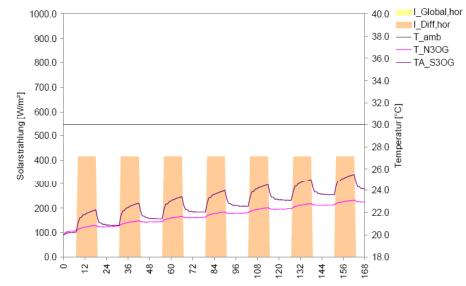
Szenario S3



Keine solare Strahlung

.

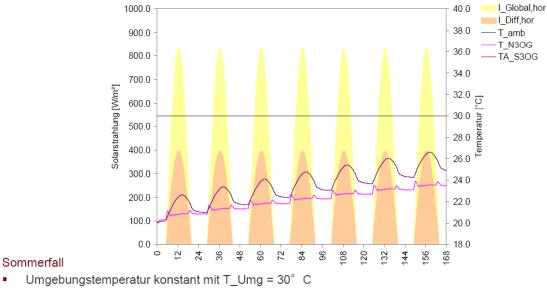
Szenario S4



Keine solare Strahlung

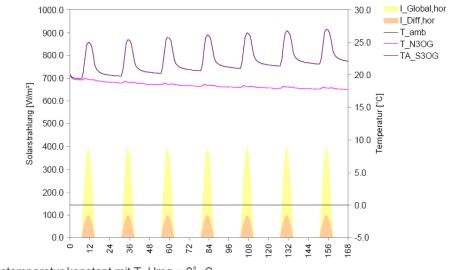
.

Szenario S6



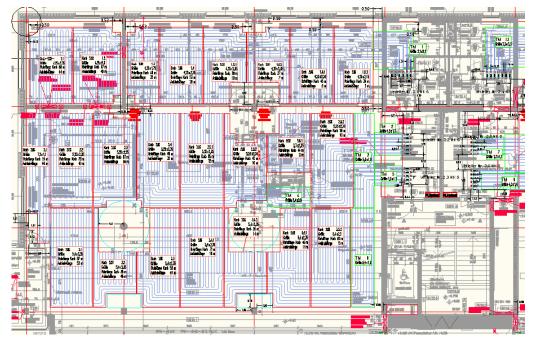
Sommerfall

- Umgebungstemperatur konstant mit T_Umg = 30° C
- Konstante Diffuse Solarstrahlung um Idiff = 400 W/m²


Szenario S7

Sinusförmig schwingende Solarstrahlung Iglob_max = 800 W/m²

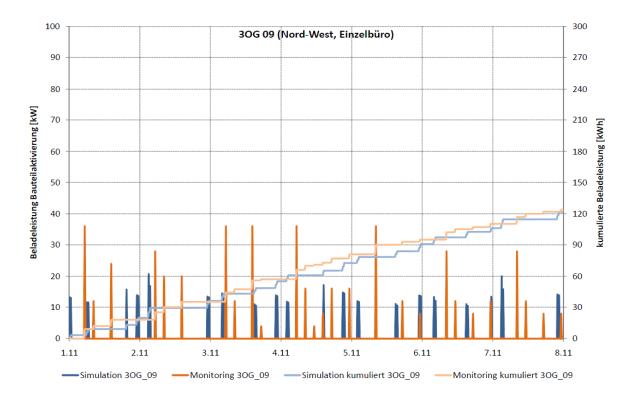
Szenario S8


Winterfall

Umgebungstemperatur konstant mit T_Umg = 0° C

Sinusförmig schwingende Solarstrahlung Iglob_max = 400 W/m²

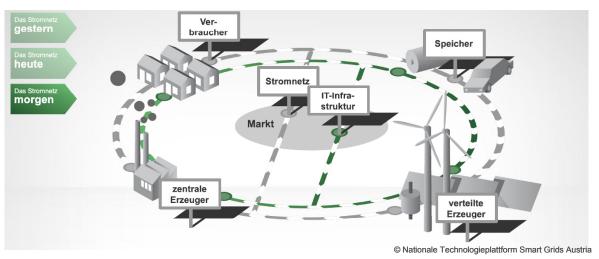
Concrete Core Activation



NCM – schedules (National Calculation Method)

2926	2927	2938	2940	2935	2936	124	125	1423	1424	1420	1421
	Office_OpenOff_Occ_	Office_OpenOff_Light_			Office_OpenOff_Equip_	Uni_Lecture_Occ_	Uni_Lecture_Occ_	Uni_Lecture_Light_	Uni_Lecture_Light_	Uni_Lecture_Equip_	Uni_Lecture_Equip
Wkdy Danuing, OFFICE	Wknd	Wkdy Danung, Orrice	Hol Hol	Wkdy	Wknd	Wkdy	Wknd	Wkdy	Wknd	Wkdy	Wknd
Area: OPEN PLAN	Area: OPEN PLAN	Area: OPEN PLAN	Area: OPEN PLAN	Area: OPEN PLAN	Area: OPEN PLAN			EDUCATION	EDUCATION	EDUCATION	EDUCATION
OFFICE Weekday	OFFICE Weekend	OFFICE Weekday	OFFICE Holiday Daily	OFFICE Weekday	OFFICE Weekend			UNIVERSITIES	UNIVERSITIES	UNIVERSITIES Area:	UNIVERSITIES
Daily Occupancy	Daily Occupancy	Daily Lighting schedule	Lighting schedule	Daily Equipment	Daily Equipment			Area: HALL/LECTURE	Area: HALL/LECTURE	HALL/LECTURE	Area: HALL/LECTURE
schedule	schedule	(Automatically	(Automatically	schedule	schedule			THEATRE/ASSEM	THEATRE/ASSEM		THEATRE/ASSEN
(AutomotionIII)	Automaticallu	importanti N	immort off	(Automoticallu 0.05	(AutomotionIII) 0,05	0	0	0	0	0.05	0,05
0	0	0	0	0.05	0,05	0	0	0	n	0.05	0,05
0	0	0	0	0.05	0.05	0	0	0	0	0.05	0.05
0	0	0	0	0.05	0.05	0	0	0	n n	0.05	0.05
ů n	n	0	n	0.05	0,05	Ū Ū	0	n	n	0,05	0.05
0	0	0	0	0.05	0.05	0	0	0	0	0.05	0.05
-	0	0	0	0.05	0.05	0	0	0	0	0.05	0.05
0.25	-	1	0	1	0.05	0	0	0	0	0.05	0.05
0.5	n	1	n	1	0.05	0.5	0	1	n	1	0.05
1	0	1	0	1	0,05	1	0	1	Ū Ū	1	0,05
1	0	1	0	1	0,05	1	0	1	0	1	0,05
1	0	1	0	1	0,05	1	0	1	0	1	0.05
0,75	0	1	0	1	0,05	0,5	0	1	0	1	0,05
0,75	0	1	0	1	0,05	0,5	0	1	0	1	0,05
1	0	1	0	1	0,05	1	0	1	0	1	0,05
1	0	1	0	1	0,05	1	0	1	0	1	0,05
1	0	1	0	1	0,05	1	0	1	0	1	0,05
0,5	0	1	0	1	0,05	0,75	0	1	0	1	0,05
0,25	0	1	0	1	0,05	0,5	0	1	0	1	0,05
0	0	0	0	0,05	0,05	0,5	0	1	0	1	0,05
0	0	0	0	0,05	0,05	0	0	0	0	0,05	0,05
0	0	0	0	0,05	0,05	0	0	0	0	0,05	0,05
0	0	0	0	0,05	0,05	0	0	0	0	0,05	0,05
0	0	0	0	0,05	0,05	0	0	0	0	0,05	0,05

Energy Performance of Buildings Directive (EPBD)



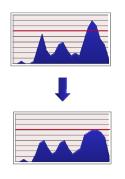
B2G – Building to Grid

Power Grid of the Near Future

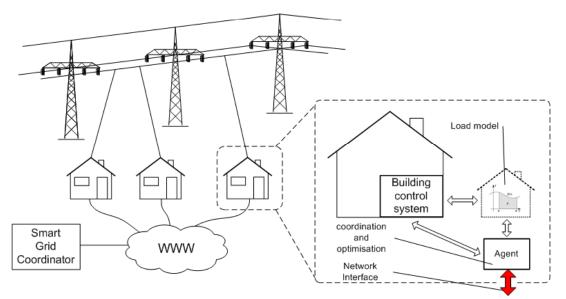
- Many decentralized producers
- Buildings: from consumer to producer & consumer -> prosumer
- Customers adapt their behavior: Smart Meters
- Power Grid combined with IT network
- New decentralized storage to compensate consumption and production (e-mobility)

الساسن

B2G – Building to Grid


- The challenge
 - High load peaks in the grid
 - Improvement of buildings with no regard to the grid
- The target
 - Intelligent building services enabling cooperative integration into the grid
 - Optimal mains operation by utilising buildings' degrees of freedom
- The method
 - Building simulation to predict status and capacity
 - Equipment and operation of 10 test buildings over one year
- The result
 - Improved load models of buildings
 - Buildings in the role of storage and active participants in a smart grid

B2G – Building to Grid


- Investigation
 - Selection of appropriate demonstration buildings in Salzburg, Austria
 - Occupancy and use, thermal mass and existing IT infrastructure
- Simplified load model
 - Simplified generic load model for electric-thermal coupling
 - Anticipatory application of storage potential
- Load Shifting
 - Determine maximum time for shifting
 - Avoid heating during grid peak loads

Interaction between the remote action, building control and the smart grid

B2G Outlook

- Find maximum time for switching off loads
 - Minimum of two hours expected
- Determine potential of electric-thermal coupling
- Simplify thermal model
 - Required for online optimization

Next steps:

Include weather prediction

29

Thank You!