

Energy Forecasting for Distributed Generation in Local Energy Neighbourhoods

SmartCoDe Expert Cooperation Workshop on Energy Efficiency in Buildings 2010

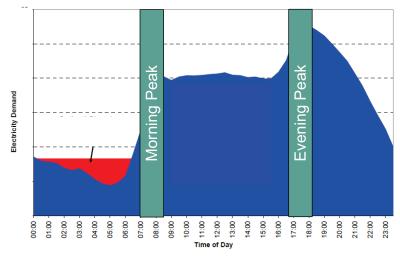
Author: Tamás Bertényi, Quiet Revolution Ltd. Date: November 16, 2010 Dissemination Level: Public

SmartCoDe and the Local Energy Producer (LEP)

- DSM and SmartCoDe project becomes a lot more interesting if there is a Local Energy Producer
- SmartCoDe is working on the specific example of small-scale wind energy integrated with the local energy neighbourhood
- > Optionally to include some degree of local energy storage
- > Provides end user with options:
 - use locally generated energy (offset local consumption)
 - or sell back to grid (export)
 - potential to engage in spot energy market (strategically timed export)
 - SmartCoDe can maximise the value of the LEP

FP7 ICT-2009 GA-No. 247473

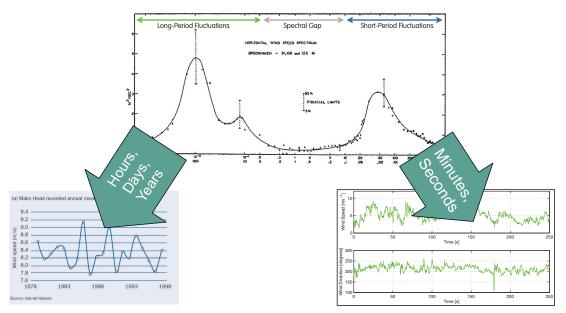
The QR5 Wind Turbine


- Small Scale: <50kW and <200m²
 - QR5: 7.5kW peak aerodynamic, 13.6m²
- Decentralised energy production
- Integrated with society
- Cost: £20,000 + installation
- Design life: 25 years

quietrevolution.

Energy Forecasting for Energy Neighbourhood

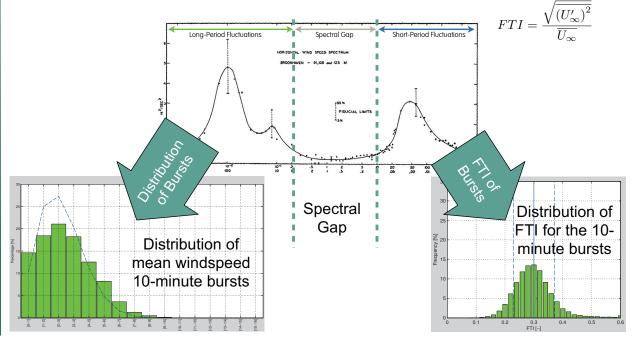
- To make the best use of LEP, SmartCoDe needs a degree of energy forecasting for decision making
 - How much energy is available in 10 minutes? In one hour? Later today?
 - Do we use the energy now turn on dispatchable load
 - Should we charge our energy storage device for later use
 - How will our energy generation profile match with grid demand?


FP7 ICT-2009 GA-No. 247473

Smart De

Forecasting Wind Energy - Wind Resource and Unsteadiness

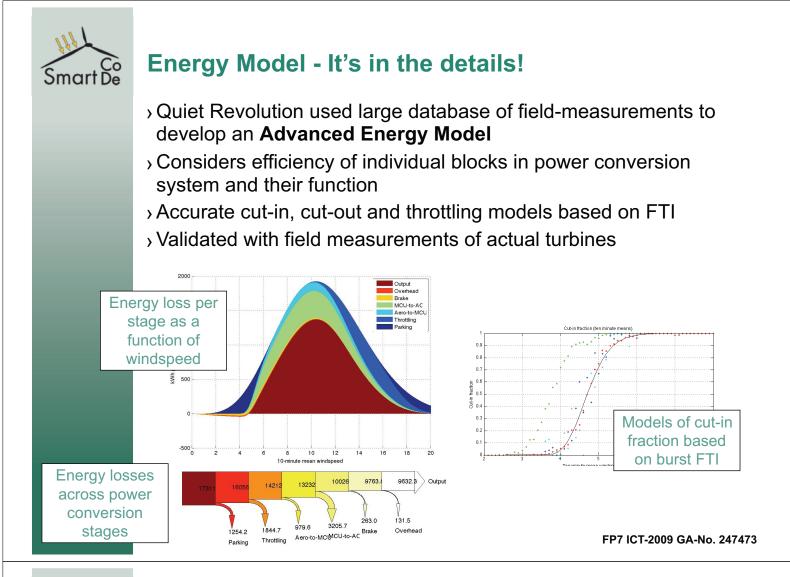
- > Forecasting wind energy what makes it challenging?
- > Wind resource is inherently unsteady
- Unsteadiness becomes increasingly more important as your wind turbine becomes smaller in size



FP7 ICT-2009 GA-No. 247473

Characterising the unsteady wind - 10 minute bursts

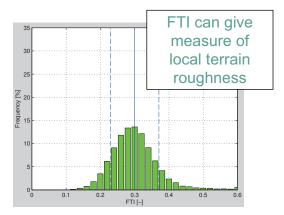
- > Unsteady wind resource is neatly divided by the "spectral gap" into long-period and short-period unsteadiness
 - Long-period: characterise as distribution of 10-minute mean values
 - Short-period: characterise as a statistical summary of each 10-minute burst
 - > Free-Stream Turbulence Intensity (FTI)



Energy Model - Why is it so hard?

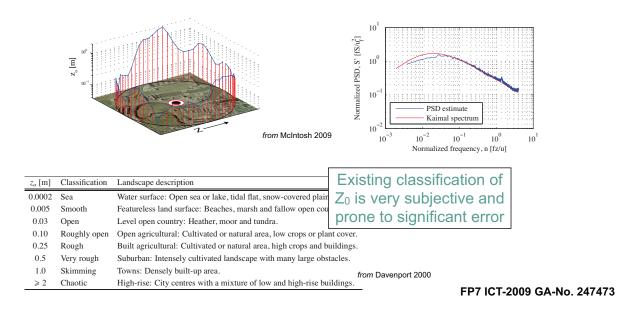
- > Wind turbine converts wind energy into electrical energy
 - wind speed ---turbine---> power, power ---time---> energy
- > Need an Energy Model for forecasting:
 - for a given wind resource (10-minute burst) what energy does the turbine deliver?
- > Developing an accurate energy model becomes more difficult:
 - with increasing unsteadiness (small-scale turbine)
 - over shorter period of time (errors from simple model tend to average out over the long term)

Duration of Wind Resource	Simple Model of Turbine Energy Production	Measured Energy Production	Error
128 days	1978 kWhr	1820 kWhr	109%
108 hours	55.8 kWhr	37.3 kWhr	149%
210 minutes	4.2 kWhr	1.01 kWhr	415%


FP7 ICT-2009 GA-No. 247473

Energy Forecasting - The Problem

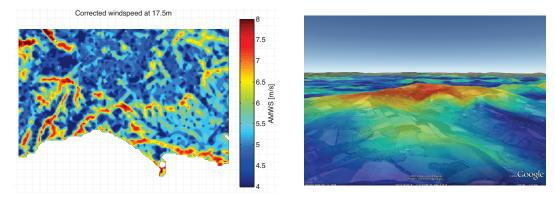
- > We are not re-inventing weather forecasting!
- > Use weather forecasting of wind resource as input to energy model
- But long-term wind resource and forecasting information is given at coarse macro scale and usually wrong height
- > Need to correct macro scale forecast to local micro-scale
 - local terrain roughness
 - local height
- Correction method based on standard atmospheric boundary layer models


FP7 ICT-2009 GA-No. 247473

Long-Term Forecasting - Determining Z₀

- Local terrain roughness, Z₀, seems to be universally correlated to local power-spectrum density measurement (McIntosh, 2009)
- Move away from very subjective and inaccurate Z₀ assessment to measurement-based approach
- **) Work ongoing** to relate Z_0 to local FTI measurements

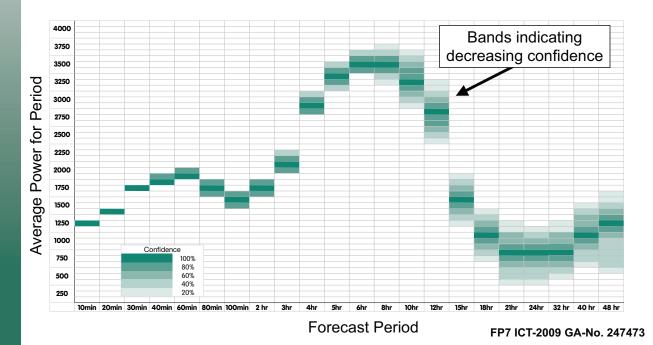
> Need to also account for directional variation in FTI and Z_0


Long-Term Forecasting - Application

- Local FTI data can be measured in a few weeks as opposed to years of measuring local wind speed resource directly
- >FTI can be measured using appropriate wind monitor tool, such as developed in SmartCoDe programme
- Long-term forecasting via short-term FTI measurement to be demonstrated in SmartCoDe project

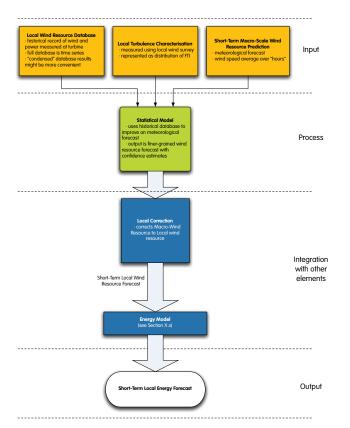
Long-Term Forecasting - Automation

- Long-term (multi-year) wind resource data available, for example UK NOABL database
- >QR is investigating automation of correcting database for local micro-scale factors
- > Can be used for deciding on siting of turbines within an area
 - as such, potentially very valuable outcome of this research project!



FP7 ICT-2009 GA-No. 247473

Short-Term Energy Forecasting


- > Not "now casting", just short-term forecast into future
- > Forecast of LEP energy yield up to 48 hours into future in 10minute blocks or coarser
- > Statistical approach will provide estimate and confidence

Smart De

Short-Term Energy Forecasting - Future Work

- Builds on approach of long-term forecasting
- > Input:
 - Macro-scale wind resource weather forecast (internet)
 - Local correction factors (measured FTI)
 - Database of local wind resource history
- > Process:
 - Statistical model from database applies first correction to weather forecast
 - Local micro-scale correction (as for long-term forecast)
 - Energy model
- > Output:
 - short-term energy forecast

FP7 ICT-2009 GA-No. 247473

Energy Forecasting for Distributed Generation in Local Energy Neighbourhoods

> Local Energy Production enriches the SmartCoDe concept

1

- > Focus on integrated small-wind
- ›Advanced Energy Model has been validated
- > Long-term energy forecast based on short-term local measurement
- Short-term energy forecast by fusing weather forecast and local historical database is next area of research
- > Demonstrator will include turbine and validate these concepts

